
※大腸菌リボソーム蛋白L31について総説はこちら
※研究内容の紹介はこちら
※最新の研究成果はこちら
※【学会発表(2008~ 】

・RFHR(Radical-Free and Highly Reducing)二次元電気泳動法による蛋白質の包括的解析
・プロテオーム解析技術やその他応用分野に向けた開発研究
・RFHR法による分析受注
・蛋白質分析装置等のオリジナル製品の販売

部門長
蛋白質解析室
遺伝子解析室
研究員
研究顧問
和田 明
和田 明 (室長)
和田 千惠子 (室長)
上田 雅美
田澤 仁

大阪医科大学物理学教室 教授、大阪医科大学研究機構 嘱託教授を経て
2007年1月 株式会社𠮷田生物研究所 顧問
2008年4月 株式会社𠮷田生物研究所 蛋白質研究室長
2009年4月 株式会社𠮷田生物研究所 バイオ情報研究部門長 現在に至る
2002年 大阪医科大学 第5回盛記念学術賞
・RFHR二次元泳動法を開発し、多数のリボソーム蛋白質を検出同定した。
・リボソーム蛋白質L35, L36を発見し、大腸菌リボソーム蛋白質の定義を完成した。
・大腸菌定常期に特異的に現われる100Sリボソームを発見した。
・大腸菌定常期のリボソームに特異的に結合している蛋白質RMF, HPF, SRAを発見した
・100S形式による翻訳制御機構ribosomal hibernationを発見した。
<2024年8月1日現在>
Ueta, M., Wada, A. & Wada, C. (2024) The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles. Genes to Cells, 29(8), 613-634. DOI: 10.1111/gtc.13137.
Akira Wada, Masami Ueta and Chieko Wada (2023) The Discovery of Ribosomal Protein bL31 from Escherichia coli: A Long Story Revisited, Feb 2023/International journal of Molecular Sciences 2023, 24,3445. https://doi.org/10.3390/ijms24043445
Hideji Yoshida, Hideki Nakayama, Yasushi Maki, Masami Ueta, Chieko Wada and Akira Wada (2021) Functional Sites of Ribosome Modulation Factor(RMF) Involved in the Formation of 100S Ribosome.frontiers in Molecular Biosciences, May 2021/Volume8/Article661691. DOI: 10.3389/fmolb.2021.661691
Ueta, M., Wada, C., & Wada, A. (2020) YkgM and YkgO maintain translation by replacing their paralogs, zinc-binding ribosomal proteins L31 and L36, with identical activities.Genes to Cells, 25(8), 562-581. DOI: 10.1111/gtc.12796.
Yoshida H, Wada A, Shimada T, Maki Y & Ishihama A. (2019) Coordinated Regulation of Rsd and RMF for Simultaneous Hibernation of Transcription Apparatus and Translation Machinery in Stationary-Phase Escherichia coli.Front Genet. 2019; 10:1153. DOI: 10.3389/fgene.2019.01153.
Ueta, M., Wada, C., Bessho, Y., Maeda, M., & Wada, A. (2017) Ribosomal protein L31 in Escherichia coli contributes to ribosome subunit association and translation, whereas short L31 cleaved by protease 7 reduces both activities.Genes to Cells, 22(5), 452-471. DOI: 10.1111/gtc.12488.
吉田秀司,和田明,(2016) 100Sリボソーム形成による翻訳制御とリボソームサイクル, 生化学,88(2),253-5-256. DOI:10.14952/SEIKAGAKU.2016.880253
Hideji Yoshida and Akira Wada(2014), The 100S ribosome: ribosomal hibernation induced by stress WIREs RNA 2014, 5:723-732. DOI: 10.1002/wrna.1242
Masami Ueta, Chieko Wada, Takashi Daifuku, Yoshihiko Sato, Yoshitaka Bessho, Aya Kitamura, Ryousuke L. Ohniwa, Kazuya Morikawa, Hideji Yoshida, Takayuki Kato, Tomoko Miyata, Keiichi Namba and Akira Wada.(2013) Conservation of two distinct types of 100S ribosome in bacteria. Genes to Cells 18 (554-574)
Hideji Yoshida, Yasushi maki, Shou Furuike, Akiko Sakai, Masami Ueta, and Akira Wada.(2012) YqjD Is an Inner Membrane Protein Associated with Stationary-Phase Ribosomes in Escherichia coli. J. Bacteriol. 16 (4178-4183)
Hiroshi Uehara, Yuki Iwasaki, Chieko Wada, Toshimichi Ikemura and Takashi Abe.(2011) A Novel bioinformatics strategy for searching industrially useful genome resources from metagenomic sequence libraries. Genome & Genetic Systems 86,(53-66)
Takayuki Kato, Hideji Yoshida, Tomoko Miyama, Yasushi Maki, Akira Wada and Keiichi Namba.(2010) Structure of 100S ribosome in the hibernation stage revealed by electron microscopy. Structure 18 (719-724)
M. Ueta, C. Wada, and A. Wada(2010) Formation of 100S ribosome in Staphylococcus aureus by the hibernation promoting factor (HPF) homolog SaHPF. Genes Cells 15 (43-58)
Yoko Doniwa, Minoru Ueda, Masami Ueta, Akira Wada, Koh-ichi Kadowaki and Nobuhiro Tsutsumi.(2010) The involvement of a PPR protein of the P Subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript. Genes454,(39-46)
A. Sato, T. Watanabe, Y. Maki, M. Ueta, Y. Ito, A. Wada, and M. Mishima(2009) Solution structure of E. coli ribosome hibernation promoting factor HPF. Biochem. Bioiphys. Res. Acta 389, (580-585)
Satoru Tanaka, Akiko Sakai, kousei Kimura, Hideji Yoshida, Hideo Fushitani, Akihiko Ogata, Akiko Miyamoto, Masakazu Fukushima, Akira Wada and Nobuhiko Tanigawa.(2009) Proteomic analysis of the basic proteins in 5-fluorouracil resistance of human colon cancer cell line using the RFHR 2D PAGE. International J. Oncology 33, (361-370)
H. Yoshida, M. Ueta, Y. Maki, A. Sakai and A. Wada(2009) Activities of Escherichia coli ribosomes in IF3 and PMF change to prepare 100S ribosome formation on entering the stationary growth phase. Genes Cells 14, (271-280)
和田 明, 吉田秀司, 上田雅美(2006)大腸菌定常期に出現する100Sリボソームの構造と機能, 蛋白質・核酸・酵素, 51 (966-971)(総説)
M. Ueta, H. Yoshida, C. Wada, T. Baba, H. Mori and A. Wada(2005)Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli, Genes to Cells, 10 (1103-1112)
T. Aiso, H. Yoshida, A. Wada and R. Ohki(2005)Modulation of mRNA stability partipitates in stationary-phase specific expression of ribosome modulation factor, RMF, J. Bacteriology, 187(1951-1958)
和田 明, 吉田秀司, 牧 泰史, 前田真希, 和田千恵子(2004)プロテオミクスの新しいツールとしてのRFHR二次元電気泳動法~大腸菌への適用, ゲノミクス・プロテオミクスの新展開 エヌ・テイ・エス社 (766-773)
H. Yoshida, H. Yamamoto, T. Uchiumi and A. Wada(2004)RMF inactivates ribosomes by covering the PTase center and entrance of peptide exit tunnel, Genes to Cells, 9-4 (271-278)
N. Arisue, H. Yoshida, A. Wada and T. Hashimoto(2004)Comparative analysis of the ribosomal components of the hydrogenosome- containing protist, Trichomonas vaginalis, J. Mol. Evol, 59 (59-71)
H. Yoshida, Y. Maki, H. Kato, H. Fujisawa, K. Izutsu, C. Wada and A. Wada(2002)The ribosome modulation factor (RMF) binding siteon the ribosome of Escherichia coli, J. Biochemistry, 132 (983-989)
K. Izutsu, A. Wada, and C. Wada(2001)Expression of ribosome modulation factor(RMF) in Escherichia coli requires ppGpp, Genes to Cells, 6 (665-676)
T. Suzuki, M. Terasaki, C. Takemoto-Hori, T. Hanada, T. Ueda, A. Wada and K. Watanabe(2001)Structual compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria, J. Biol. Chem., 276 (21724-21736)
K. Izutsu, C. Wada, Y. Komine, T. Sako, C. Ueguchi, S. Nakura, and A. Wada(2001)Escherichia coli ribosome-associated protein SRA, whose copy number increases during stationary phase, J. Bacteriol., 183 (2765-2773)
Y. Maki, H. Yoshida and A. Wada(2000)Two proteins, YfiA and YhbH, associated with resting ribosomes in the stationary phase Escherichia coli, Genes to Cells, 5 (965-974)
A. Wada, R. Mikkola, C. G. Kurland and A. Ishihama(2000)Growth phase-coupled changes of the ribosome profile in natural isolate and laboratory strains of Escherichia coli, J. Bacteriol., 182 (2893-2899)
Y. Maki, A. Tanaka and A. Wada(2000)Stoichiometric analysis of barley plastid ribosomal proteins, Plant and Cell Physiology, 41 (289-299)
A. Wada(1998)Growth phase coupled modulation of Escherichia coli ribosomes, Genes to Cells, 3 (203-208) [Review]
N. Sato and A. Wada(1996)Disruption analysis of the gene for a cold-regulated RNA-binding protein, rbpAI, in Anabaena. Cold-induced initiation of the heterocyst differentiation pathway, Plant and Cell Physiology, 37-8 (1150-1160)
A. Wada, K. Igarashi, S. Yoshimura, S. Aimoto and A. Ishihama(1995)Ribosome modulation factor: Stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli, Biochem. Biophys. Res. Commun., 214-2 (410-417)
M. Yamagishi, H. Matsushima, A. Wada, M. Sakagami, N. Fujita and A. Ishihama(1993)Regulation of the Escherichia coli rmf gene encoding the ribosomal modulation factor: growth phase- and growth rate- dependent control, The EMBO Journal, 12 (625-630)
A. Wada, Y. Yamazaki, N. Fujita and A. Ishihama(1990)Structure and probable genetic location of a “ribosome modulation factor” associated with 100S ribosomes in stationary-phase Escherichia coli cells, Proc. Natl. Acad. Sci. USA, 87 (2657-2661)
A. Wada and T. Sako(1987)Primary structures of and genes for new ribosomal proteins A and B in Escherichia coli, J. Biochem., 101-3 (817-820)
A. Wada(1986)Analysis of Escherichia coli ribosomal proteins by an improved two dimensional gel electrophoresis 2. Characterization of four new proteins, J. Biochem., 100-6 (1595-1605)
A. Wada(1986)Analysis of Escherichia coli ribosomal proteins by an improved two dimensional gel electrophoresis 1. Detection of four new proteins, J. Biochem., 100-6 (1583-1594)
Y. Nakamura and A. Wada(1973)Effect of a bifunctional imidoester on dissociation of 70S ribosomes in Escherichia coli, Biochem. Biophys. Res. Commun., 52-1 (35-42)
A. Wada, Y. Yamamoto, H. Fukutome and Y. Kawade(1968)Ultraviolet inactivation of amino acid acceptance of transfer RNA, Biochem. Biophys. Acta, 161-2 (469-480)
2003年5月 有限会社バイオ情報技術研究所 神戸研究所所長
2007年1月 株式会社𠮷田生物研究所 バイオ情報研究部長
2009年4月 株式会社𠮷田生物研究所 遺伝子解析室長 現在に至る
・複製開始蛋白質(RepE)はDNA 複製開始因子として、また自己遺伝子の抑制因子として機能すること、この二つの機能がRepE単量体と二量体が担っている事を明らかにした。
・RepE二量体から単量体への変換にはDnaK,DnaJ,GrpE分子シャペロンの関与が必要であることを発見した。
・RepE単量体と二量体の結晶構造を京都大学理学部三木研との共同研究で明らかにした。
・F plasmidのコピー数の調節機構を明らかにした。
大腸菌ゲノムの構造解析:
・W3110株のゲノムの塩基配列決定にあたって堀内プロジェクトの作業を分担した。
・大腸菌ゲノムの全タンパク質間の相互作用の網羅的解析を森CRESTで行った。
<2024年8月1日現在>
Ueta, M., Wada, A. & Wada, C. (2024) The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles. Genes to Cells, 29(8), 613-634. DOI: 10.1111/gtc.13137.
Akira Wada, Masami Ueta and Chieko Wada (2023) The Discovery of Ribosomal Protein bL31 from Escherichia coli: A Long Story Revisited, Feb 2023/International journal of Molecular Sciences 2023, 24,3445. https://doi.org/10.3390/ijms24043445
Hideji Yoshida, Hideki Nakayama, Yasushi Maki, Masami Ueta, Chieko Wada and Akira Wada (2021) Functional Sites of Ribosome Modulation Factor(RMF) Involved in the Formation of 100S Ribosome.frontiers in Molecular Biosciences, May 2021/Volume8/Article661691. DOI: 10.3389/fmolb.2021.661691
Ueta, M., Wada, C., & Wada, A. (2020) YkgM and YkgO maintain translation by replacing their paralogs, zinc-binding ribosomal proteins L31 and L36, with identical activities.Genes to Cells, 25(8), 562-581. DOI: 10.1111/gtc.12796.
Ueta, M., Wada, C., Bessho, Y., Maeda, M., & Wada, A. (2017) Ribosomal protein L31 in Escherichia coli contributes to ribosome subunit association and translation, whereas short L31 cleaved by protease 7 reduces both activities.Genes to Cells, 22(5), 452-471.DOI: 10.1111/gtc.12488.
Masami Ueta, Chieko Wada, Takashi Daifuku, Yoshihiko Sato, Yoshitaka Bessho, Aya Kitamura, Ryousuke L. Ohniwa, Kazuya Morikawa, Hideji Yoshida, Takayuki Kato, Tomoko Miyata, Keiichi Namba and Akira Wada.(2013) Conservation of two distinct types of 100S ribosome in bacteria. Genes to Cells 18 (554-574)
Hiroshi Uehara, Yuki Iwasaki, Chieko Wada, Toshimichi Ikemura and Takashi Abe.(2011) A Novel bioinformatics strategy for searching industrially useful genome resources from metagenomic sequence libraries. Genome & Genetic Systems 86,(53-66)
M. Ueta, C. Wada, and A. Wada(2010) Formation of 100S ribosome in Staphylococcus aureus by the hibernation promoting factor (HPF) homolog SaHPF. Genes Cells 15 (43-58)
M. Ueta, R. L. Ohniwa, H. Yoshida, Y. Maki, C. Wada, and A. Wada(2008) Role of HPF(Hibernation Promoting Factor) in Translational Activity in Escherichia coli. J.Biochem. 143, (425-433)
R. L. Ohniwa, K. Morikawa, J. Kim, T. Kobori, K. Hizume, R. Matsumi, H. Atomi, T. Imanaka, T. Ohta, C. Wada, S. H. Yoshimura and K. Takeyasu (2007) Atomic force microscopy dissects the hierarchy of genome architectures in eukaryote, prokaryote and chloroplast. Microscopy and Microanalysis 13, (3-12)
R. L. Ohniwa, K. Morikawa, S. L. Takeshita, J. Kim, T. Ohta, C. Wada and K. Takeyasu (2007) Transcription-coupled nucleoid architecture in bacteria. Genes to Cells 12, (1141-1152)
A. Nakamura, C. Wada and K. Miki (2007) Expression and purification of F plasmidRepE and preliminary X-ray crystallographic study of its complex with operator DNA. Structural Biology and Crystallizaion communications F63. (346-349)
A. Nakamura, C. Wada and K. Miki (2007) Structural basis for regulation of bifunctional roles in replication initiator protein. Proc. Nat. Acad. Sci. 104 (18484-18489)
M. Arifuzzaman et al. C. Wada (2006) Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Research 16, (686-691)
M. Yokokawa, C. Wada, T, Ando, N. Sakai, A. Yagi, S. H. Yoshimura and K. Takeyasu (2006) Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformaional changes of GroEL. The EMBO J. 25, (4567-4576)
R. L. Ohniwa, K. Morikawa, J. Kim, T. Ohta, A. Ishihama, C. Wada and K. Takeyasu (2006) Dynamic state of DNA topology is essential for genome condensation in bacteria. EMBO J. 25: 5591-5602
Y. Hirano, R. L. Ohniwa, C. Wada, S. H. Yoshimura and K. Taketasu (2006) Human small G proteins, ObgH1 and ObgH2, participate in the maintenance of mitochondria and nucleolar architectures. Genes to Cells 11, (1295-1304)
A. Sato, G. Kobayashi, H. Hayashi, H. Yoshida, A. Wada, M. Maeda, S. Hiraga, K. Takeyasu and C. Wada (2005) The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes to Cells.10(5),( 393-408)
M. Ueta, H. Yoshida, C. Wada, T. Baba, H. Mori and A. Wada(2005)Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli, Genes to Cells, 10 (1103-1112)
Md. S. Kabir, D. Yamashita, S. Koyama, T. Oshima, K. Kurokawa, M.Maeda, R. Tsunedomi, M. Murata, C. Wada, H. Mori and M. Yamada (2005) Cell lysis directed by σ E in early stationary phase and effect of induction of the rpoE gene on global gene expression in Escherichia coli. Microbiology, 151, (2721-2735)
T. Oshima, C. Wada,Y. Kawagoe, T. Ara, M. Maeda,Y. Masuda, S. Hiraga and H. Mori(2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol. Micro, 45(3), (673-695)
K. Izutsu, A. Wada and C. Wada (2001) Expression of Ribosome Modulation Factor (RMF) in Escherichia coli requires ppGpp. Genes to cells, 6, (665-676)
G. Kobayashi, S. Moriya and C. Wada (2001) Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol. Microbiology, 41, (1037-1052)
S. H. Yoshimura, R. L. Ohniwa, M. H. Sato, F. Matsunaga, G. Kobayashi, H. Uga, C. Wada and K. Takeyasu (2000) DNA phase transition promoted by replication initiator. Biochemistry, 39, (9139-9145)
H. Uga, F. Matsunaga and C. Wada (1999) Regulation of DNA replication by iterons: an interaction between the ori2 and incC regions mediated by RepE-bound iterons inhibits DNA replication of mini-F plasmid in Escherichia coli, The EMBO 18, (3856-3867)
H. Komori, F. Matsunaga, Y. Higuchi, M. Ishiai, C. Wada and K. Miki (1999) Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 Å resolution. The EMBO 18,( 4597-4607)
F. Matsunaga, M. Ishiai, G. Kobayashi, H. Uga, T. Yura and C. Wada (1997) The central region of RepE initiator protein of mini-F plasmid plays a crucial role in dimerization required for negative replication control. J. Mol. Biol., 274: (27-38)
Y. Yamamoto et al., (1997) Construction of a Contiguous 874-kb Sequenc of the Esherichia coli K-12 Genome Corresponding to the 50.0-68.8 min on the linkage map an analysis of its sequence features. DNA Reseach 4: (91-113)
H. Aiba et al., (1996) A 570 kb DNA Sequence of the Esherichia coli K-12 Genome Corresponding to the 28.0-40.1 min Region on the Linkage Map: DNA Reseach 3, (363-377)
H. Itoh et al., (1996) A 460 kb DNA Sequence of the Escherichia coli K-12 Genome Corresponding to the 40.1-50.0 min Region on the Linkage Map. DNA Reseach 3, (379-392)
Y. Kawasaki, F. Matsunaga, Y. Kano, T. Yura, and C. Wada (1996) The localized melting of mini-F origin by the combined action of the mini-F initiator protein (RepE) and HU and DnaA of Escherichia coli., Mol. Gen Genet., 253: (42-49)
T. Oshima et al., (1996) A 718-kb DNA Sequence of the Escherichia coli K-12 Genome Corresponding to the 12.7-28.0 min Region on the Linkage Map: DNA Reseach 3, (137-155)
F. Matsunaga, Y. Kawasaki, M. Ishiai, K. Nishikawa, T. Yura and C. Wada (1995) DNA-Binding Domain of the RepE Initiator Protein of Mini-F Plasmid: Involvement of the Carboxyl-Terminal Region. J. Bact. 177: (1994-2001)
M. Ishiai, C. Wada, Y. Kawasaki and T. Yura (1994) Replication initiator protein RepE of mini-F Plasmid: Functional differentiation between monomers (initiator) and dimers (autogenous repressor). Proc. Natl. Acad. Sci. USA, 91, (3839-3843)
Y. Kawasaki, C. Wada and T. Yura (1992) Binding of RepE initiator protein to mini-F DNA origin (ori2): Enhancing effects of repE mutations and DnaJ heat shock protein. J. Biol. Chem., 267, (11520-11524)
Y. Kawasaki, C. Wada and T. Yura (1990) Roles of Escherichia coli heat shock proteins DnaK, DnaJ and GrpE in mini-F plasmid replication. Mol. Gen. Genet, 220(2), (277-282)
和田千惠子(1988) FプラスミドのDNA複製開始の調節 「生物物理」23-5、(32-36)
C. Wada, M. Imai and T. Yura (1987) Host control of plasmid replication - requirement for the sigma-factor σ32 in transcription of mini-F replication intiator gene. Proc. Natl. Acad. Sci. USA, 84(24), (8849-8853)
(財)大阪バイオサイエンス研究所、京都大学ウイルス研究所勤務を経て
2003年4月~2008年3月 大阪医科大学物理学教室
2008年4月 株式会社𠮷田生物研究所バイオ情報研究部門 研究員
2010年9月 理学博士 学位取得
・大腸菌のリボソーム結合蛋白質HPF (Hibernation promoting factor) が、100Sリボソ
ームの形成を促進すること、及びそのパラログであるYfiAが逆に100S形成を阻害す
ることを明らかにした。
・70Sリボソームにリボソーム結合蛋白質RMFが結合してまず90S粒子となり、HPF
が結合することによって100Sになるという、100Sリボソームは二段階で形成されるこ
とを明らかにした。
・黄色ブドウ球菌を用いて、グラム陽性菌で初めて100S形成を発見した。
<2024年8月1日現在>
Ueta, M., Wada, A. & Wada, C. (2024) The hibernation promoting factor of Betaproteobacteria Comamonas testosteroni cannot induce 100S ribosome formation but stabilizes 70S ribosomal particles. Genes to Cells, 29(8), 613-634. DOI: 10.1111/gtc.13137.
Akira Wada, Masami Ueta and Chieko Wada (2023) The Discovery of Ribosomal Protein bL31 from Escherichia coli: A Long Story Revisited, Feb 2023/International journal of Molecular Sciences 2023, 24,3445. https://doi.org/10.3390/ijms24043445
Hideji Yoshida, Hideki Nakayama, Yasushi Maki, Masami Ueta, Chieko Wada and Akira Wada (2021) Functional Sites of Ribosome Modulation Factor(RMF) Involved in the Formation of 100S Ribosome.frontiers in Molecular Biosciences, May 2021/Volume8/Article661691. DOI: 10.3389/fmolb.2021.661691
Ueta, M., Wada, C., & Wada, A. (2020) YkgM and YkgO maintain translation by replacing their paralogs, zinc-binding ribosomal proteins L31 and L36, with identical activities.Genes to Cells, 25(8), 562-581. DOI: 10.1111/gtc.12796.
Ueta, M., Wada, C., Bessho, Y., Maeda, M., & Wada, A. (2017) Ribosomal protein L31 in Escherichia coli contributes to ribosome subunit association and translation, whereas short L31 cleaved by protease 7 reduces both activities.Genes to Cells, 22(5), 452-471. DOI: 10.1111/gtc.12488.
M. Ueta, C. Wada, T. Daifuku, Y. Sako, Y. Bessho, A. Kitamura, R.L. Ohniwa, K. Morikawa, H. Yoshida, T. Kato, T. Miyata, K. Namba and A. Wada (2013) Conservation of two distinct types of 100S ribosome in bacteria. Genes Cells18, (554-574)
H. Yoshida, Y. Maki, S. Furuike, A. Sakai, M. Ueta and A. Wada (2012) YqjD is an inner membrane protein associated with stationary-phase ribosomes in Escherichia coli. J. Bacteriol. 194 (4178-83)
Y. Doniwa, M. Ueda, M. Ueta, A. Wada, K. Kadowaki and N. Tsutsumi (2010) The involvement of a PPR protein of the P subfamily in partial RNA editing of an Arabidopsis mitochondrial transcript. Genes 454 (39-46)
M. Ueta, C. Wada, and A. Wada(2010) Formation of 100S ribosome in Staphylococcus aureus by the hibernation promoting factor (HPF) homolog SaHPF. Genes Cells 15 (43-58)
A. Sato, T. Watanabe, Y. Maki, M. Ueta, Y. Ito, A. Wada, and M. Mishima(2009) Solution structure of E. coli ribosome hibernation promoting factor HPF. Biochem. Bioiphys. Res. Acta 389, (580-585)
H. Yoshida, M. Ueta, Y. Maki, A. Sakai and A. Wada(2009) Activities of Escherichia coli ribosomes in IF3 and PMF change to prepare 100S ribosome formation on entering the stationary growth phase. Genes Cells 14, (271-280)
Ueta, M. Ohniwa, R.L.,Yoshida, H., Maki, Y., Wada, C., and Wada, A. (2008)
Roles of HPF (Hibernation promoting factor) in translational activity in Escherichia coli.
J.Biochem., 143, 425-433.
吉田秀司、上田雅美、牧泰史、和田明 (2006)
ストレスによるリボソームの休眠 蛋白質・核酸・酵素、51, 2590-2595.
和田 明, 吉田秀司, 上田雅美 (2006)
大腸菌定常期に出現する100Sリボソームの構造と機能, 蛋白質・核酸・酵素, 51,
966-971.
Ueta, M., Yoshida, H., Wada, C., Baba, T., Mori, H., and Wada, A. (2005)
Ribosome binding proteins YfiA and YhbH have opposite functions during 100S formation
in the stationary phase of Escherichia coli. Genes Cells, 10, 1103-1112.
1990年 福井大学工学部教授
2002年 福井大学退職
および
称号
1990年 日本学士院賞
1994年 Honorary Member, German Botanical Society
2001年 勲三等旭日中綬賞
2004年 日本植物学会名誉会員
2004年 ISI Highly Cited Researchers
2010年 日本植物学会賞 大賞

〒607-8081 京都市山科区竹鼻外田町11-1 Tel/Fax: 075-581-0894
Eメール: cwada@yoshidabio.co.jp
・JR「山科」駅 徒歩7分 ・地下鉄「山科」駅 徒歩8分 ・京阪電車「山科」駅 徒歩7分